В чем особенности лимфатической радужной оболочки глаза?

Радужка глаза: строение, функции, болезни и особенности

Радужная оболочка играет большое значение в функционировании зрительного аппарата. Она выполняет роль своеобразного барьера для световых потоков и регулирует объем их проникновения на сетчатку. Элемент отличается по цвету, который зависит от количества пигментных клеток, вырабатывающих меланин. Оттенок глаз носит наследственный характер.

Что это такое

На первый взгляд может показаться, что радужная оболочка представляет собой диск, окрашенный в определенный цвет, который занимает основную часть поверхности глазного яблока. На самом деле это не так. Элемент является передним участком сосудистой оболочки органа зрения, в центре которого имеется небольшое отверстие – зрачок.

Радужка пропускает такое количество импульсов, которого достаточно для нормального восприятия окружающих предметов.

Строение

Оболочка в форме диска имеет толщину в пределах 0,2 миллиметров. В ее состав входит три слоя:

  • передний пограничный;
  • средний стромальный;
  • задний пигментно-мышечный.

Передний слой состоит из клеточек соединительной материи, под которыми находятся меланоциты, содержащие пигмент. В строме располагается сеть капилляров и коллагеновые волокна. Задняя часть радужки состоит из гладкой мускулатуры, отвечающей за сужение зрачка, и подходит вплотную к поверхности хрусталика.

Наружный слой радужки поделен на два пояса: зрачковый и ресничный. Между ними располагается своеобразный валик – брыжжи. Доступ крови к оболочке обеспечивают ресничные артерии, венчающиеся артериальным кругом. От него в разные стороны отходят ответвления – веточки сосудов, формирующие малый круг артерий.

Ресничные нервы образуют густое сплетение, которое обеспечивает защитную реакцию (например, при попадании в глаз соринки появляется ощущение присутствия постороннего предмета). На стыке с ресничным телом иногда происходит травматический отрыв оболочки и кровоизлияние в камеры зрительного аппарата.

Функции и цвет радужки

Оболочка пропускает такое количество световых лучей, которого достаточно для нормального восприятия окружающего мира. Это и есть основная функция элемента. Непрозрачный слой пигмента защищает задний отдел зрительного аппарата от избыточного света. Рефлекторное сокращение зрачка позволяет регулировать поток световых импульсов.

Дополнительные функции радужки:

  • Фиксирует стекловидное тело.
  • Помогает сфокусировать картинку на сетчатую оболочку.
  • Равномерно распределяет по органу зрения внутриглазную влагу.
  • Обеспечивает стабильный показатель температуры жидкости в передней камере.
  • Благодаря внушительному количеству сосудов снабжает глаза полезными веществами.

Радужка является непрозрачной и имеет оттенок, который зависит от количества пигментных клеток. Их объем передается по генетической линии.

В зависимости от концентрации меланоцитов оболочка может иметь разный цвет:

  • У грудничков количество пигмента минимально, поэтому практически все младенцы обладают серо-голубыми глазками. В течение нескольких лет их оттенок меняется, хотя в три месяца можно предположить, какой цвет получится в итоге.
  • У людей преклонного возраста концентрация меланоцитов уменьшается, и радужка глаза становится светлей. К тому же сужается зрачок. Выцветание элемента можно замедлить, если с юных лет при ярком свете носить затемненные очки.
  • Альбиносы могут похвастаться розовой радужкой. Ее оттенок обусловлен кровью, протекающей через сосудистую систему.
  • При небольшом количестве пигмента оболочка приобретает синий, серый или голубой оттенок. При излишках меланоцитов становится коричневой.
  • Зеленый тон получается за счет отложений билирубина при недостатке пигмента.
  • Неоднородное окрашивание радужки и глаза разного цвета – крайне редкое явление, но все с подобным феноменом можно столкнуться.

Симптомы поражения радужки

При повреждении оболочки пациенты сталкиваются со следующими проявлениями:

  • Непереносимость яркого света.
  • Усиленное слезотечение.
  • Падение остроты зрения.
  • При надавливании в области век появляются болевые ощущения.
  • Изменение размера и формы зрачка.
  • Радужка становится другого цвета.

Диагностика заболеваний

Если у пациента обнаружены симптомы повреждения оболочки, то назначается несколько обязательных обследований:

  • С помощью бокового освещения проводится визуальный осмотр.
  • Биомикроскопия. Бесконтактный метод диагностики, позволяющий детально разглядеть структуры зрительного аппарата.
  • Пупиллометрия. Замер диаметра зрачка.
  • Флуоресцентная ангиография. Для визуализации картинки в сосуды вводят специальное вещество.
При появлении неприятной симптоматики незамедлительно посетите клинику для прохождения обследования. Помните о том, что радужка играет центральную роль в зрительном восприятии. Она контролирует количество света, которое проникает на сетчатку. При повреждении элемента страдает работоспособность многих структур зрительного аппарата.

Заболевания

К нарушению функциональности радужной оболочки могут привести следующие патологии:

  • Воспалительные процессы (ирит).
  • Травмирование глаза.
  • Болезнь Бехтерева.
  • Колобома.
  • Герпетические инфекции.
  • Венерические недуги.
  • Повышенный уровень сахара в крови (диабет).
  • Туберкулез.

Ирит – это воспаление, затрагивающее радужку. Если в абсцесс оказывается втянуто цилиарное тело, то врачи диагностируют иридоциклит. Воспаление, перешедшее на сосудистую оболочку, называют увеит.

Колобома радужки

В переводе с греческого языка заболевание означает «недостающая часть». Если применить подобное определение к офтальмологии, то получится отсутствие «детали» в структуре глазного яблока. Аномалия может быть наследственной или приобретенной.

В процессе развития эмбриона на второй неделе начинает формироваться глазной пузырь. К концу четвертой он превращается в бокал со щелью в нижней части. В нее попадает мезодерма. На пятой неделе отверстие закупоривается.

На четвертом месяце внутриутробного развития начинается формирование радужки. Если эмбриональная щель закрыта, то она развивается неполноценно. В результате у малыша диагностируют врожденную колобому.

Отклонение чревато дефектами строения материй, в радужке образуется выемка и зрачок приобретает форму груши. Также меняется картина глазного дна: при увеличении отверстия в оболочке на сетчатку попадает большое количество света. Подобная реакция способна ослепить человека.

Приобретенная форма недуга обычно наблюдается после проведения хирургического вмешательства по поводу опухоли радужки. Чаще всего патология затрагивает один глаз, в исключительных случаях поражает оба. Если колобома небольшая и не вызывает дискомфорта, то вмешательство медиков и дополнительная терапия не требуются.

Лечение

При подозрении на воспаление радужки врачи рекомендуют пройти курс терапии в стационаре, чтобы постоянно находиться под контролем медиков. Для лечения патологий, затрагивающих оболочку, обычно используют:

  • противовоспалительные средства (мази или глазные капли);
  • анальгетики;
  • кортикостероиды;
  • антигистаминные препараты;
  • мидриатики для снижения внутриглазного давления.

Ни в коем случае не прибегайте к самолечению! Неправильно подобранная терапия может привести к развитию осложнений и слепоте. При необходимости осуществления оперативного вмешательства пациента направляют в специализированную клинику.

Заключение

Чтобы избежать проблем с глазами нужно тщательно следить за их здоровьем. Регулярные профилактические осмотры у окулиста позволят обнаружить негативные симптомы, способные привести к развитию тяжелых осложнений. Любое повреждение радужки требует срочного визита в клинику. Ведь она играет огромную роль в зрительном процессе. Нарушение ее нормального функционирования способно привести к слепоте.

Посмотрев видеоролик, вы узнаете, о чем может рассказать радужная оболочка глаз.

Анатомия глаза: строение и функции

З рение — один из важнейших механизмов в восприятии человеком окружающего мира. С помощью визуальной оценки человек получает порядка 90 % информации, поступающей извне. Безусловно, при недостаточном или полностью отсутствующем зрении организм приспосабливается, частично компенсируя утерю с помощью других органов чувств: слуха, обоняния и осязания. Тем не менее ни одно из них не способно восполнить тот пробел, который возникает при недостатке зрительного анализа.

Как устроена сложнейшая оптическая система человеческого глаза? На чём основан механизм визуальной оценки и какие этапы он включает? Что происходит с глазом при потере зрения? Обзорная статья поможет разобраться в этих вопросах.

Анатомия глаза человека

Зрительный анализатор включает 3 ключевых компонента:

  • периферический, представленный непосредственно глазным яблоком и прилегающими тканями;
  • проводниковый, состоящий из волокон зрительного нерва;
  • центральный, сосредоточенный в коре головного мозга, где происходит формирование и оценка зрительного образа.

Рассмотрим строение глазного яблока, чтобы понять, какой путь проходит увиденная картинка и от чего зависит её восприятие.

анатомия глаза

Строение глаза: анатомия зрительного механизма

От правильного строения глазного яблока напрямую зависит, какой будет увиденная картинка, какая информация поступит в клетки головного мозга и каким образом она будет обработана. В норме этот орган выглядит в форме шара диаметром 24–25 мм (у взрослого человека). Внутри него находятся ткани и структуры, благодаря которым картинка проецируется и передается на участок мозга, способный обработать полученную информацию. Структуры глаза включают несколько различных анатомических единиц, которые мы и рассмотрим.

Покровная оболочка — роговица

Роговица представляет собой особый покров, защищающий наружную часть глаза. В норме она абсолютно прозрачна и однородна, поскольку выполняет функцию считывания информации. Через неё проходят световые лучи, благодаря которым человек может воспринимать трёхмерное изображение. Роговица бескровна, поскольку не содержит ни одного кровеносного сосуда. Она состоит из 6 различных слоёв, каждый из которых несёт определённую функцию:

  • Эпителиальный слой. Клетки эпителия находятся на наружной поверхности роговицы. Они регулируют количество влаги в глазу, которая поступает из слёзных желёз и насыщается кислородом за счёт слёзной плёнки. Микрочастицы — пыль, мусор и прочее — при попадании в глаз могут легко нарушить целостность роговицы. Впрочем, этот дефект, если он не затронул более глубокие слои, не представляет опасности для здоровья глаза, поскольку эпителиальные клетки быстро и относительно безболезненно восстанавливаются.
  • Боуменова мембрана. Этот слой также относится к поверхностным, поскольку располагается сразу за эпителиальным. Он, в отличие от эпителия, не способен восстанавливаться, поэтому его травмы неизменно приводят к ухудшению зрения. Мембрана отвечает за питание роговицы и участвует в обменных процессах, протекающих в клетках.
  • Строма. Этот довольно объёмный слой состоит из волокон коллагена, которые заполняют собой пространство.
  • Десцеметова мембрана. Тоненькая мембранка на границе стромы отделяет её от эндотелиальной массы.
  • Эндотелиальный слой. Эндотелий обеспечивает идеальную пропускную способность роговицы за счёт удаления лишней жидкости из роговичного слоя. Она плохо восстанавливается, поэтому с возрастом становится менее плотной и функциональной. В норме плотность эндотелия составляет от 3,5 до 1,5 тысяч клеток на 1 мм 2 в зависимости от возраста. Если этот показатель падает ниже 800 клеток, у человека может развиться отёк роговицы, в результате которого резко снижается чёткость зрения. Такое поражение — естественный итог глубокой травмы или серьёзного воспалительного заболевания глаз.
  • Слёзная плёнка. Последний роговичный слой отвечает за санацию, увлажнение и смягчение глаз. Слёзная жидкость, поступающая в роговицу, смывает микрочастички пыли, загрязнения и улучшает проницаемость кислорода.

Функции радужки в анатомии и физиологии глаза

За передней камерой глаза, заполненной жидкостью, располагается радужная оболочка. От её пигментации зависит цвет глаз человека: минимальное содержание пигмента обусловливает голубой цвет радужки, среднее значение характерно для зелёных глаз, а максимальный процент присущ кареглазым и черноглазым людям. Именно поэтому большая часть деток рождается голубоглазыми — у них синтез пигмента ещё не отрегулирован, поэтому радужка чаще всего светлая. С возрастом эта характеристика меняется, и глазки становятся темнее.

Анатомическое строение радужки представлено мышечными волокнами. Они молниеносно сокращаются и расслабляются, регулируя проникающий световой поток и изменяя размер пропускного канальца. В самом центе радужки располагается зрачок, который под действием мышц изменяет диаметр в зависимости от степени освещённости: чем больше световых лучей попадает на поверхность глаза, тем уже становится просвет зрачка. Этот механизм может нарушаться под действием медицинских препаратов или в результате болезни. Краткосрочное изменение реакции зрачка на свет помогает диагностировать состояние глубоких слоёв глазного яблока, однако длительная дисфункция может привести к нарушению зрительного восприятия.

Хрусталик

За фокусировку и чёткость зрения отвечает хрусталик. Эта структура представлена двояковыпуклой линзой с прозрачными стенками, которая удерживается ресничным пояском. Благодаря выраженной эластичности хрусталик может практически моментально менять форму, регулируя чёткость зрения вдали и вблизи. Чтобы увиденная картинка получалась корректной, хрусталик должен быть абсолютно прозрачным, однако с возрастом или в результате болезни линзы могут мутнеть, вызывая развитие катаракты и, как следствие, нечёткость зрения. Возможности современной медицины позволяют заменить человеческий хрусталик имплантом с полным восстановлением функционала глазного яблока.

Стекловидное тело

Поддерживать шарообразную форму глазного яблока помогает стекловидное тело. Оно заполняет собой свободное пространство задней области и выполняет компенсаторную функцию. Благодаря плотной структуре геля стекловидное тело регулирует перепады внутриглазного давления, нивелируя негативные последствия его скачков. Кроме того, прозрачные стенки ретранслируют световые лучи непосредственно на сетчатку, благодаря чему складывается полная картинка увиденного.

Роль сетчатки в строении глаза

Сетчатка — одна из самых сложных и функциональных структур глазного яблока. Получая от поверхностных слоёв световые пучки, она преобразует эту энергию в электрическую и передаёт импульсы по нервным волокнам непосредственно в мозговой отдел зрения. Этот процесс обеспечивается благодаря слаженной работе фоторецепторов — палочек и колбочек:

  1. Колбочки — это рецепторы детального восприятия. Чтобы они могли воспринимать световые лучи, освещение должно быть достаточным. Благодаря этому глаз может различать оттенки и полутона, видеть мелкие детали и элементы.
  2. Палочки относятся к группе рецепторов повышенной чувствительности. Они помогают глазу видеть картинку в неудобных условиях: при недостаточном освещении или не в фокусе, то есть на периферии. Именно они поддерживают функцию бокового зрения, обеспечивая человеку панорамный обзор.

Склера

Тыльная оболочка глазного яблока, обращённая к глазнице, называется склерой. Она плотнее роговицы, поскольку отвечает за перемещение и поддержание формы глаза. Склера непрозрачна — она не пропускает световые лучи, полностью ограждая орган с внутренней стороны. Здесь сосредоточена часть сосудов, питающих глаз, а также нервные окончания. К наружной поверхности склеры прикреплены 6 глазодвигательных мышц, регулирующих положение глазного яблока в глазнице.

На поверхности склеры расположен сосудистый слой, обеспечивающий поступление крови к глазу. Анатомия этого слоя несовершенна: здесь нет нервных окончаний, которые могли бы сигнализировать о появлении дисфункции и прочих отклонений. Именно поэтому офтальмологи рекомендуют обследовать глазное дно не реже 1 раза в год — это позволит выявить патологию на ранних стадиях и избежать непоправимого нарушения зрения.

Физиология зрения

Чтобы обеспечить механизм зрительного восприятия, одного глазного яблока недостаточно: анатомия глаза включает ещё и проводники, которые передают полученную информацию в головной мозг для расшифровки и анализа. Эту функцию выполняют нервные волокна.

Читайте также:  Дрожжевой кольпит: симптомы и лечение

Световые лучи, отражаясь от предметов, попадают на поверхность глаза, проникают через зрачок, фокусируясь в хрусталике. В зависимости от расстояния до обозримой картинки хрусталик с помощью цилиарного мышечного кольца меняет радиус кривизны: при оценке удалённых объектов он становится более плоским, а дли рассмотрения предметов вблизи — наоборот, выпуклым. Этот процесс называется аккомодацией. Он обеспечивает изменение преломляющей силы и места фокуса, благодаря чему световые потоки интегрируются непосредственно на сетчатке.

В фоторецепторах сетчатки — палочках и колбочках — световая энергия трансформируется в электрическую, и в таком виде её поток передаётся нейронам зрительного нерва. По его волокнам возбуждающие импульсы перемещаются в зрительный отдел коры головного мозга, где информация считывается и анализируется. Такой механизм обеспечивает получение визуальных данных из окружающего мира.

Строение глаза человека с нарушением зрения

Согласно статистике, более половины взрослого населения сталкиваются с нарушением зрения. Наиболее распространёнными проблемами являются дальнозоркость, близорукость и сочетание этих патологий. Основной причиной этих заболеваний служат различные патологии в нормальной анатомии глаза.

При дальнозоркости человек плохо видит предметы, расположенные в непосредственной близости, однако может различить мельчайшие детали удалённой картинки. Дальняя острота зрения — бессменный спутник возрастных изменений, поскольку в большинстве случаев она начинает развиваться после 45-50 лет и постепенно усиливается. Причин этому может быть много:

  • укорочение глазного яблока, при котором изображение проецируется не на сетчатке, а за ней;
  • плоская роговица, не способная к регулировке преломляющей силы;
  • смещение хрусталика в глазу, приводящее к неправильной фокусировке;
  • уменьшение размеров хрусталика и, как следствие, некорректная передача световых потоков на сетчатку.

В отличие от дальнозоркости, при миопии человек детально различает картинку вблизи, однако дальние объекты видит расплывчато. Такая патология чаще имеет наследственные причины и развивается у детей школьного возраста, когда глаз испытывает нагрузки во время интенсивного обучения. При таком нарушении зрения анатомия глаза также изменяется: размер яблока увеличивается, и изображение фокусируется перед сетчаткой, не попадая на её поверхность. Ещё одной причиной близорукости может служить излишняя кривизна роговицы, из-за чего световые лучи преломляются слишком интенсивно.

Нередки ситуации, когда признаки дальнозоркости и близорукости сочетаются. В этом случае изменение строения глаза затрагивают и роговицу, и хрусталик. Низкая аккомодация не позволяет человеку в полной мере видеть картинку, что свидетельствует о развитии астигматизма. Современная медицина позволяет исправить большинство проблем, связанных с нарушением зрения, однако куда проще и логичнее заранее побеспокоиться о состоянии глаз. Бережное отношение к органу зрения, регулярная гимнастика для глаз и своевременное обследование у офтальмолога помогут избежать множества проблем, а значит, сохранить идеальное зрение на долгие годы.

Лимфатическая система глаза

Первые понятия о лимфообращении человека относят к XVII веку, однако благодаря затруднениям по выявлению хрупких сосудов с бесцветным содержимым его изучение прогрессировало очень медленно. В 1896 году Gerota предложил метод окраски лимфатических сосудов лимфотропными веществами, что послужило для описания анатомии в классических научных трактатах Poirer (1898), Iossifow (1930) и Rouviere (1932).

Лимфатическая система человека (ЛС) – отдел сосудистой системы, в составе которой объединяются пути транспорта лимфы (капилляры, сосуды, протоки) и лимфатические органы (узлы, фолликулы, миндалины, селезенка), собирающие лимфу из тканей и органов и отводящие её в венозную систему. Стенки лимфатических капилляров образованы однослойным эндотелием, через который легко проходят растворы электролитов, углеводы, жиры и белки. Капилляры сливаются в сосуды, в стенках которых могут встречаться гладкомышечные клетки и парные двустворчатые клапаны, их просвет неравномерен с чередованием расширений и стриктур.

Долгое время обсуждается вопрос о включении в состав ЛС т.н. прелимфатических путей (тканевые щели и периваскулярные пространства). Отчасти это связано с размытостью определения лимфы. Foldi называет лимфой только ту жидкость, которая находится внутри лимфатических сосудов и отделена от окружающих тканей эндотелием. Такое понимание лимфы разделяют наибольшее число сторонников, хотя оно и не является общепринятым. Так, Mayerson называл лимфой перикапиллярный фильтрат (прелимфу), смешанный с тканевой жидкостью и проникший в закрытую лимфатическую систему. Крупнейший российский лимфолог, академик Жданов, писал, что не следует называть лимфой жидкость, содержащуюся в тканях, потому что окружающая лимфатические капилляры жидкость и лимфа различны по составу, по химическим и физическим свойствам. Этой точки зрения мы и будем придерживаться далее.

Основные функции лимфы заключаются в поддержании постоянства состава и объема тканевой жидкости, возврате белка из межклеточной среды в кровеносное русло, всасывании и транспорте продуктов метаболизма и обеспечении механизма иммунитета. Непосредственно в структурах глаза лимфатические сосуды были описаны еще в 1861 г. . Однако необходимость в специальных методах их визуализации и изучения фактически привела к литературному забвению. В современных пособиях по анатомии и физиологии зрительного анализатора информация о ЛС отсутствует или ограничена перечислением узлов, принимающих лимфу от области век и орбиты. Тем не менее к настоящему времени в отечественной и, преимущественно, в зарубежной литературе имеется информация по анатомическим и функциональным исследованиям в этой области.

Анатомия лимфатической системы

Роговица. В 1849 г. Боумен, вводя в ее строму ртуть и ряд масляных растворов, визуализировал мгновенное появление перекрещивающихся линий – “роговичные трубочки” Боумена, а Реклингаузен (1962), обрабатывая роговицу ляписом (нитрат серебра), обнаружил в ее слоях черные линии и щели – “лимфатические канальцы” Реклингаузена. Это легло в основу просуществовавшей порядка 100 лет “теории лимфатических щелей” как начала ЛС переднего отрезка глаза.

Однако работы конца XX века (Jmai и Oikawa, 1972) окончательно доказали отсутствие прямой связи тканей роговицы с лимфатиками лимбальной зоны. В настоящее время принято считать, что тканевая жидкость роговицы лишь всасывается через стенку лимфатических капилляров лимба, которые и являются начальным отделом ЛС. Это было установлено Foldi (1972), отметившим выраженное замедление всасывания введенной в роговицу гомогенной серы после шейной лимфоблокады, и подтверждено Stremke (1979), описавшим эвакуацию меченого 35S роговичного гликопротеина из аллогенного роговичного трансплантата в регионарные лимфоузлы.

Современные иммуногистохимические исследования с антителами, специфичными к маркеру лимфатического эндотелия (LIVE-1), фиксируют наличие лимфатических сосудов в роговице только в случае ее неоваскуляризации.

Бульбарная конъюнктива. Почти 165 лет назад топографию конъюнктивальных лимфатиков стали изучать с помощью посмертных инъекций ряда веществ, а первую прижизненную окраску произвел Knusel (1924) с помощью субконъюнктивальной инъекции метиленового синего. До настоящего времени, а в ряде случаев и в наши дни применяют темно-синий краситель patent-blau. В 1974 г. Benedikt осуществил конъюнктивальную лимфографию с помощью флюоресцеина натрия. В СССР эта методика была усовершенствована и впервые использована для функциональных исследований ЛС глаза профессором В.Ф. Шмыревой.

В настоящее время в лимфатическом сплетении конъюнктивы выделяют ряд отделов, в каждом из которых присутствует поверхностный и глубокий слои.

Лимфатический круг Тейхмана: лимбальное круговое сплетение тончайших лимфатических сосудов. Находится в тесной связи с лимбальными артерио-венозными капиллярными аркадами. Радиальные лимфатические сосуды (поверхностное и глубокое сплетения) расположены перпендикулярно лимбу в зоне палисадов Фогта. Находясь в тесном контакте с венозным и артериальным руслом данной зоны, радиальные лимфатические сосуды далее дренируются в перикорнеальное лимфатическое кольцо.

Перикорнеальное лимфатическое кольцо образовано 2 и более относительно крупными коллекторами, расположенными на расстоянии 3-8 мм от лимба как в поверхностных, так и в глубоких слоях. От перикорнеального кольца лимфа оттекает далее в сторону экватора, в густую сеть широко анастомозирующих между собой извитых лимфатических сосудов. Диаметр их значительно больше, чем у кровеносных сосудов. Вдоль всего протяжения имеются перетяжки в местах расположения клапанов и расширения (ампулы) между ними, что придает сосудам вид четок.

По анатомии оттока лимфы из конъюнктивы эту сеть подразделяют на 4 квадранта: верхний, нижний, медиальный и латеральный. С височной стороны сосуды объединяются в крупный глубокий лимфатический выпускник, идущий в сторону наружной спайки век, с носовой они чаще сливаются в несколько сосудов. В 1930 г. Slorca описал верхний и нижний собирающие каналы. Первыми лимфоузлами для конъюнктивальных лимфатиков являются околоушные, также установлены дренажные связи с подчелюстными и шейными лимфоузлами.

Лимфатические сосуды тарзальной конъюнктивы мелкие и трудно контрастируемые. Отток лимфы осуществляется в сосуды век по краю хряща.

Лимфатические сосуды век подразделяют на поверхностное претарзальное сплетение, дренирующее кожу и мышцы, и глубокое посттарзальное (хрящ и конъюнктива век). От них лимфа поступает в сосуды, идущие в поверхностные и глубокие околоушные лимфоузлы, так же как и лимфатики слезной железы. Сосуды же слезного мешка сопровождают лицевую вену и впадают в поднижнечелюстные узлы, а сосуды носослезного канальца соединяются с сосудами носа и впадают как в поднижнечелюстные, так и в глубокие шейные лимфатические узлы.

Из передней камеры глаза внутриглазная жидкость, помимо классического пути “шлеммов канал – водяные вены – венозная система” и увеосклерального пути оттока, также дренируется по периваскулярным пространствам и частично, возможно, транссклерально, всасываясь, в конечном итоге, в капилляры лимфатической системы.

Одними из первых исследователей, предположивших, что около четверти объема водянистой влаги дренируется по увеосклеральному пути, были Bill и Hellsing (1965), также у истоков его исследований стояли Phillips (1971), Нестеров (1976), Черкасова (1977). Применяя интракамеральные инъекции соединения радиоактивного тория (торотраст), Jnomata (1972), а позже Cole и Monzo (1976) подтвердили путь оттока камерной влаги по увеосклеральному пути мимо хориоидеи к структурам зрительного нерва. Gruntzig (1976) в эксперименте на собаках, используя радиоактивный микроколлоид 99mTc, зафиксировал контраст в ретробульбарном пространстве и далее в шейных лимфоузлах.

В указанных выше исследованиях с торотрастом, Jnomata и Cole также показали путь оттока жидкости из радужки, цилиарного тела и хориоидеи по увеосклеральному пути и периваскулярным пространствам этих структур. Несмотря на предположения в начале XX века о наличии лимфатических сосудов в этих структурах, исследованиями с помощью электронной микроскопии было показано их отсутствие (Casley-Smith, 1978).

Этой же методикой была подробно исследована структура перивазальных пространств. Gartner (1966) показал, что артериолы и венулы сосудистого тракта и сетчатки сопровождаются пространствами, содержащими коллагеновые фибриллы, отростки базальной мембраны и адвентициальных клеток. Foldi (1972) после шейной лимфоблокады отмечал офтальмоскопическую картину ретинального отека. Позднее в экспериментах на кошках Casley-Smith (1978), полностью удаляя и перевязывая все поверхностные и глубокие лимфоузлы и протоки, фиксировал с помощью электронной микроскопии выраженное расширение периваскулярных пространств радужки, хориоидеи и сетчатки, наполненных жидкостью с высоким содержанием белка. Эти исследования косвенно доказывают связь данных структур с лимфатической системой.

В целом, на основании целого ряда исследований, в конце XX века зарубежные лимфологи сошлись во мнении, что стекловидное тело, интерстиций между глиальными клетками диска зрительного нерва, мягкая мозговая оболочка между пучками нейронов зрительного нерва, перивазальные пространства центральных сосудов и субарахноидальное пространство зрительного нерва являются единым прелимфоваскулярным путем.

Действительно, применяя современный гистохимический анализ, Gausas (1999) не обнаружил собственных лимфатических сосудов в орбите ни в мышцах, ни в жировой ткани, за исключением слезной железы и dura mater зрительного нерва. Анализ с применением специфических моноклональных антител к лимфатическим сосудам (D2- 40) также не обнаружил таковых в орбитальном содержимом. В 2011 г. Gupta (Торонто, США) выступила на Всемирном глаукомном конгрессе с докладом об обнаружении лимфатических сосудов в структуре цилиарного тела. На вопрос о возможных дальнейших путях оттока лимфы профессор сказала, что предполагает наличие лимфатических путей в орбите, хотя это не доказано. Исходя из работ ее коллектива, было предложено увеосклеральный отток жидкости называть увеолимфатическим.

Физиология лимфатической системы

Возможности лимфокинетики переднего отрезка глаза стали активно изучаться спустя несколько лет после открытия в этой зоне ЛС. К тому времени в офтальмологической практике для терапии воспалительных заболеваний глаз с целью рассасывания инфильтратов и анальгезирующего эффекта активно применяли дионин (этилморфина гидрохлорид) в виде 1-2% раствора и мази. Wolfberg (1899) первый обратил внимание на “целебное наполнение всего тракта конъюнктивы и краев век лимфой” при инстилляции дионина. Дальнейшие исследования Birch-Hirschfeld (1909), Friedburg (1978) и Gruntzieg (1979) показали выраженное расширение лимфатической системы конъюнктивы, сопровождающееся усилением пассажа жидкости. Sugar (1957) выявил расширение лимфатиков после субконъюнктивальной инъекции кортизона.

Исследования лимфокинетики с помощью наиболее распространенных красителей (метиленовый синий, patent-blau) имели существенные недостатки, заключающиеся в трудности самостоятельного заполнения сосудов и невозможности объективного определения динамики лимфотока в связи с высоким молекулярным весом красителей и низкой скоростью лимфотока. Таким образом, оптимальными красителями послужили низкомолекулярные соединения (флюоресцеин Na). Стенка лимфатических сосудов и капилляров проницаема на всем протяжении, и при субконъюнктивальной инъекции флюоресцеин поступает по всей окружности созданного депо красителя, свободно продвигаясь естественным током лимфы. Окрашивая одним из первых жидкость передней камеры флюоресцеином после фистулизирующей антиглаукомной хирургии, Benedikt (1974) показал, что поступая в фильтрационную подушку внутриглазная жидкость активно всасывается в лимфатическую сеть конъюнктивы.

После субконъюнктивального введения в паралимбальную зону верхнего сегмента 0,05 мл стерильного 10% раствора флюоресцеина Na проф. В.Ф. Шмырева производила фотосъемку и оценивала число сосудов, структуру, минимальный, максимальный и средний диаметры, линейную и объемную скорости лимфотока. Согласно ее данным, основная функция лимфатиков бульбарной конъюнктивы состоит в освобождении интерстициального пространства от избытка тканевой жидкости, макромолекул и клеточных остатков. В норме лимфатические сосуды находятся в основном в спавшемся состоянии. В условиях патологии, сопровождающейся деструкцией тканей, лимфатическая система начинает активно функционировать.

Читайте также:  Как удалить бородавку жидким азотом

Известно, что количество лимфы зависит от уровня клеточного метаболизма. Действительно, в норме у лиц до 50 лет при флюоресцентной лимфоангиографии лимфатики выявлялись только в 17%. С увеличением возраста их число возрастало до 33% (60 лет) и до 65% (старше 60). Линейная скорость лимфотока в контрастированных сосудах большая (до 7 мм/мин) – признак быстрой эвакуации лимфы. Объемная скорость лимфотока низкая (до 1 мм3 /мин) – признак отсутствия потребности в активном лимфатическом дренаже тканей. Известно, что с возрастом происходят изменения в структурах дренажной системы глаза, обусловленные естественным процессом старения, следствием чего и явилась более частая выявляемость лимфатических сосудов у лиц пожилого возраста.

Иную картину наблюдали при глаукоме. Число контрастируемых сосудов увеличивалось вплоть до мощной разветвленной сети (до 10 анастомозирующих лимфатиков увеличенного диаметра до 1 мм). Средний диаметр оказывается в 1,5 раза больше, чем при возрастной норме. Перетяжки в местах расположения клапанов исчезают, ампулообразные расширения сглаживаются, и лимфатические сосуды приобретают вид колбасообразных цилиндров. Линейная скорость лимфотока уменьшается в 1,5 раза, а объемная скорость увеличивается почти в 4 раза за счет увеличения количества контрастированных сосудов и их диаметра. В целом, лимфатическая система переднего сегмента глаза при глаукоме характеризуется нагруженностью, а в запущенных случаях – перегруженностью.

Степень функциональной нагрузки связывается со степенью деструкции дренажной зоны склеры. При слабой степени деградации коллагеновых волокон и сохранении резерва путей оттока внутриглазной жидкости объёмная скорость лимфотока в 5 раз меньше, чем при грубых деструк- тивных изменениях склеральных дренажных путей. Накопление продуктов распада тканей дренажной зоны, вероятно, и ведет к активному функциониро- ванию лимфатической системы переднего сегмента глаза и характерной лимфоангиографической кар- тине при первичной глаукоме. Результатом исследований В.Ф. Шмыревой также стали рекомендации по выбору медикаментозного и хирургического лечения в зависимости от нагрузки на лимфатики, а также заключения о важной роли бульбарной конъюнктивы в пролонгации гипотензивного эффекта антиглаукомных операций.

Таким образом, лимфатическая система глаза является важным анатомо-физиологическим дренажным комплексом, обладающим мощными резервными возможностями в условиях патологии, значение которой следует изучать и в дальнейшем.

Радужка глаза: строение, функции, болезни и особенности

Радужная оболочка глаза призвана контролировать функционирование зрительного аппарата и качество зрения. Она способна не только сигнализировать о состоянии здоровья внутренних органов человека, но и придает красоту, очарование взгляду благодаря многообразию цветовых оттенков.

Что это такое

На первый взгляд кажется, что радужка – это обыкновенный цветной диск, занимающий значительную поверхность глазного яблока. Но на самом деле она являет собой передний отдел его сосудистой оболочки — диафрагму, в центре которой расположено отверстие круглой формы – зрачок.

Радужка глаза: фото

Радужка пропускает предельно допустимое количество световых лучей для того, чтобы человек видел нормально.

Строение

Радужная оболочка имеет толщину около 0,2 мм, форму диска и состоит из 3 слоев:

• передний пограничный;
• средний стромальный;
• задний пигментно-мышечный.

Передний слой сформирован из клеток соединительной ткани, под которыми расположены меланоциты, содержащие пигмент. В строме, находится капиллярная сеть и волокна коллагена. Задняя часть органа включает в себя гладкую мышцу, отвечающую за уменьшение зрачка, дилататор и примыкает к поверхности хрусталика.

Наружная поверхность оболочки разделена на пару поясов: зрачковый и ресничный, а между ними находится валик – брыжжи.

От количества меланоцитов – пигментных клеток — зависит цвет радужки:

  • У новорожденных малышей слишком малое количество пигмента, поэтому их глазки серо-голубые. Цвет их глаз изменяется на протяжении нескольких лет, хотя в 3-месячном возрасте уже можно предположить какой будет их окрас.
  • У пожилых людей количество пигмента снижается и радужка светлеет, к тому же сокращается диаметр зрачков. Выцветание органа возможно замедлить, если с молодых лет при ярком освещении использовать темные солнцезащитные очки.

• люди-альбиносы являются обладателями розовой радужки, ее цвет обусловлен кровью, протекающей в сосудах;
• при малом количестве меланоцитов она имеет синий, серый или голубой окрас;
• при излишке пигмента радужка становится коричневой;
болотный цвет обретается за счет комбинации скопления меланина и недостаточно пигментированных клеток;
зеленый цвет орган приобретает за счет отложений билирубина при небольшом количестве меланина;
неоднородный окрас участков радужки и разноцветные глаза – явление очень редкое, но все же подобный феномен существует.

Функции

Главная физиологическая роль радужной оболочки заключается в регулировании поступающих внутрь глазного яблока лучей света.

Результат достигается с помощью поочередного сужения и расширения зрачка. В норме его ширина варьируется от 2 до 5 мм, но при слабом или излишне ярком свете он может сужаться до 1 мм или расширяться до 8-9. На диаметр зрачка, помимо освещения, может влиять эмоциональное настроение человека (боль, страх, радость), применение медицинских препаратов, офтальмологические заболевания, неврологические недуги.

Заболевания

Болезни воспалительного характера именуются иритами. Поражение недугом цилиарного тела называется иридоциклитом, а если воспаление переходит на сосудистую оболочку, то это уже увеит.

Основой развития заболевания могут служить:

• вирусы, бактерии, паразиты;
• аллергены;
• ревматические недуги;
• болезнь Бехтерева;
• герпетические инфекции;
• сахарный диабет любого типа;
• туберкулез;
• венерические заболевания.

Основными признаками воспалительной реакции являются:

• резкая и сильная боль в голове (особенно вечером или ночью);
• неприятные ощущения в области пораженного глаза;
• усиленное слезотечение;
• потеря четкости зрения;
• боязнь света;
• проявление на белке глаза сине-красных пятен.

Отсутствие профессиональной терапии чревато как частичной, так и полной потерей зрения, поражением сосудистой оболочки или сетчатки. Больному необходимо стационарное лечение. В борьбе с недугом офтальмологи обычно используют противовоспалительные капли и мази, анальгетики, антигистамины, кортикостероиды и мидриатики, снижающие внутриглазное давление.

Колобома радужки

В переводе с греческого, колобома – «недостающая часть», а применительно к офтальмологии — отсутствие части структуры глазного яблока. Проблема бывает наследственной или приобретенной.

Также колобома влечет за собой изменения глазного дна: при увеличенном зрачке на сетчатку глаза попадает слишком много света, что может ослепить больного.

Для предотвращения проблем с глазами необходимо внимательно следить за состоянием здоровья. Регулярные медицинские осмотры позволят выявить негативную симптоматику, провоцирующую осложнения на глаза, в том числе и на радужную оболочку. Любое ее поражение требует незамедлительного визита к офтальмологу и четкого выполнения всех врачебных рекомендаций.

Чем определяется цвет глаз: особенности строения радужки

С человеческими глазами связано множество мистических теорий и суеверий. В далекое Средневековье зеленоглазых женщин запросто сжигали на кострах, признавая ведьмами. Те ужасные времена прошли давно. Однако даже сегодня, в век науки и техники, многие люди пребывают в уверенности, что цвет глаз отражает сущность, показывает характер и предопределяет судьбу человека.

В наше время люди все еще склонны мистифицировать вещи, которые им не до конца понятны. Такова природа человека – попытаться найти объяснение тому, чему нет достоверных доказательств. Мы не будем опровергать или подтверждать какие-либо теории, а всего лишь расскажем о строении радужки, цвете человеческих глаз и о том, чем они определяются.

Очи – зеркало души

Наука доказала тот факт, что на Земле не существует двух человек с одинаковыми глазами. И дело не столько в цвете, сколько в индивидуальных особенностях строения радужки. Она имеет неповторимую структуру, уникальную для каждого отдельного человека. Умея сканировать и фиксировать рисунок радужной оболочки, его можно использовать даже в криминалистике вместо отпечатков пальцев.

Как известно, радужкой называется цветная часть сосудистой оболочки глаза, расположенная между роговицей и хрусталиком. Она имеет округлую форму, а в самом ее центре находится небольшое отверстие – зрачок. Радужка защищает внутренние структуры глазного яблока от вредного излучения и регулирует количество света, попадающего на сетчатку. В этом процессе большое значение играют сужения и расширения зрачка.

Радужная оболочка человеческого глаза имеет три слоя:

  • поверхностный пограничный;
  • средний стромальный (из мезодермы);
  • внутренний пигментно-мышечный (из эктодермы).

Строение радужки

Толстая строма образована большим количеством сосудов, коллагеновых волокон и множеством других клеток. Тесно переплетаясь между собой, все эти структуры образуют неровный рельеф, который и обеспечивает индивидуальность радужки.

На поверхности радужной оболочки можно заметить большое количество углублений, выступов и неровностей. Офтальмологи называют их трабекулами, криптами и лакунами. Некоторые из данных образований являются врожденными, другие появляются вследствие различных заболеваний. Исследование рисунка радужки в диагностических целях называется иридодиагностикой.

Как работает сканер радужной оболочки

Практически всем людям приходилось слышать о сканировании сетчатки. У многих эта процедура ассоциируется с научной фантастикой и шпионскими фильмами. Однако распознавание глазного дна является вполне реальной, информативной и используемой во многих сферах процедурой, которая, к сожалению, имеет свои недостатки.

Сканирование сетчатки предусматривает анализ расположения кровеносных сосудов на глазном дне. Этот рисунок индивидуален у каждого отдельного человека. Однако со временем сосуды глазного дна могут меняться. Чаще всего это происходит у лиц с гипертонической болезнью, сахарным диабетом, возрастными изменениями сетчатой оболочки и другими распространенными заболеваниями. Именно это делает сканирование сетчатки несовершенным.

Следует отметить, что во время распознавания сетчатой оболочки глаза получают большую дозу излучения, что оказывает негативное влияние на зрительный орган. Поэтому в наше время более информативным и безопасным считается сканирование радужки с помощью компьютерных технологий. Процедура довольно проста в выполнении, благодаря чему широко применяется в биометрических системах аутентификации. В отличие от отпечатков пальцев, рисунок радужной оболочки нельзя изменить хирургическим путем или подделать.

На сегодняшний день распознавание радужки используется при изготовлении биометрических паспортов. Во многих аэропортах перед посадкой на самолет сканируют глаза пассажира, подтверждая таким образом его личность. При этом человеку не нужно снимать очки или контактные линзы. Лазерная коррекция зрения или перенесенные операции на глазах никоим образом не влияют на результаты сканирования.

Некоторые современные гаджеты также оснащены сканером радужки. Например, владельцы некоторых смартфонов могут разблокировать свое устройство, всего лишь расположив его перед глазами. Технология сканирования радужки потихоньку внедряется во многие сферы человеческой жизни.

Следует отметить, что рисунок радужной оболочки может меняться при ее травмах и некоторых заболеваниях. Это делает процедуру несовершенной.

Чем определяется цвет человеческих глаз

Бытует мнение, что цвет радужки напрямую зависит от количества в ней пигмента меланина. Однако это не совсем так. Оттенок глаз определяется еще и плотностью радужной оболочки. Оба эти признака закодированы в генах человека и достаются ему от родителей.

Как мы уже говорили, строма радужки состоит из множества различных клеток. В ней находятся фибробласты, соединительнотканные элементы и меланоциты (клетки, продуцирующие меланин). У людей с карими глазами имеется огромное количество этого пигмента, что и обеспечивает темный оттенок радужной оболочки. Именно этот цвет глаз является доминирующим у людей. Следует отметить, что меланин может иметь только коричневый цвет, но никак не голубой или зеленый.

В радужке мужчин и женщин со светлыми глазами содержится совсем немного меланина. Поэтому цвет их глаз определяется плотностью радужной оболочки. Наименее плотная она у голубоглазых, средняя – у лиц с серыми глазами, высокая – с зелеными.

Существуют сотни оттенков радужки, причем их существование имеет вполне научное объяснение. Как уже упоминалось в тексте, радужка является частью сосудистой оболочки глазного яблока. Это значит, что в ней имеется большое количество мелких капилляров. Так почему же глаза у людей не бывают окрашенными в красный или вишневый цвет? Этот любопытный факт объясняется особенностями строения сосудов радужки. Их стенки образованы плотными коллагеновыми волокнами и имеют синеватый оттенок. Благодаря этому они скрывают циркулирующую внутри кровь. Более того, коллаген в строме радужной оболочки дополнительно прикрывает капилляры и придает глазам нужный оттенок.

Следует отметить, что у альбиносов глаза никогда не бывают красными. Они могут иметь голубоватый, ярко-синий или серый оттенок. Цвет глаз у них опять-таки определяется плотностью коллагеновых волокон в строме радужной оболочки.

Как поменять цвет глаз

Некоторые представительницы прекрасного пола бывают недовольными цветом своих глаз. Одни девушки мечтают стать кареглазыми, другие – обменять карие глаза на голубые, третьи – стать обладательницами колдовских зеленых глаз. Современные технологии позволяют это сделать, но с определенными сложностями и с риском для здоровья.

Наиболее простым и доступным способом изменения цвета глаз является подбор контактных линз. К сожалению, подобный подход имеет много нежелательных последствий. Регулярное ношение линз может привести к развитию синдрома сухого глаза, аллергического конъюнктивита и других опасных заболеваний. К тому же, к таким контактным линзам довольно трудно привыкнуть.

Сделать радужки более светлыми (серыми или голубыми) можно с помощью лазерной коррекции цвета глаз. Эта методика была разработана в США доктором Грегом Хормером. Пока что она находится на стадии испытаний. Лазерная коррекция подразумевает удаление избытка пигмента с помощью световых лучей определенной длины. Сменить цвет глаз можно и хирургическим путем, однако имплантация искусственной радужки является довольно травматической операцией и не вполне оправдывает себя.

Немало женщин пытается изменить цвет глаз с помощью специальных глазных капель. Определенные препараты от глаукомы (Траватан, Латанопрост, Пролатан) со временем могут окрашивать радужку в более темный цвет. Но их использование без разрешения врача крайне опасно и может иметь тяжелые последствия.

О каких болезнях могут рассказать глаза

Изменение цвета радужки может указывать на серьезные офтальмологические или системные заболевания. Гетерохромия (разноцветные радужные оболочки) может быть врожденной и приобретенной. В первом случае она обусловлена генетически и не представляет никакой угрозы для жизни и здоровья человека.

Читайте также:  Какие функции выполняет автономная нервная система?

Спонтанная приобретенная гетерохромия чаще всего возникает при односторонних иридоциклитах, синдроме Фукса и некоторых других увеальных дистрофиях. Иногда цвет радужки меняется у детей с синдромом Горнера, вызванным поражением симпатической нервной системы. Заметив у себя или ребенка подобное явление, необходимо как можно быстрее обращаться к врачу.

Следует запомнить, что беспричинное изменение цвета радужки говорит о тяжелом заболевании (глаукоме, эндофтальмите), которые могут привести к снижению зрения и даже слепоте.

В чем особенности лимфатической радужной оболочки глаза?

Человеческий глаз – красивый и удивительный орган, живой оптический прибор. Благодаря ему, мы видим днем и ночью, различаем цвета и объем изображения. По глазам человека можно определить его характер и мысли, настроение, отношение к окружающему миру и конкретным людям. Не зря народная мудрость гласит: глаза – зеркало души.

Глаз – орган зрения, который до сих пор не изучен до конца и является достаточно сложным и не до конца изученным анализатором. Даже в наше время у ученых иногда возникают вопросы по поводу строения и предназначения этого органа. Хорошее зрение необходимо человеку для любой деятельности: учебы, отдыха, повседневной жизни. До 90 % информации об окружающем мире поступает с помощью органа зрения. Без него мир бы был однотипным и неинтересным. И именно сохранение зрения в наше время приобретает особую актуальность. Зрение принадлежит к числу интереснейших явлений природы. Над его изучением, его тончайших механизмов работают сотни исследователей во многих лабораториях мира. Так, В 19 веке Г. Гельмгольц создал физиологическую оптику. М.И. Авербах изучал процесс преломления лучей света в системе органов глаза (близорукость и дальнозоркость) [2]. В России вопросами диагностики по радужной оболочке глаза стали заниматься с 1967 года Е.С. Вельховер, Ф.Н. Ромашов и другие. При медицинском факультете Университета Дружбы Народов имени П. Лумумбы создан отдел клинических исследований, одним из главных направлений которого является изучение вопросов иридодиагностики [3].

Поэтому, актуальность данной темы не вызывает сомнений.

Цель работы – изучив строение, особенности и возможности радужной оболочки глаза, определить по ней функциональное состояние организма и указать существующие отклонения от нормы в органах и системах.

Задачи:

1. Изучить строение и функции радужной оболочки

2. Изучить особенности и возможности радужной оболочки глаза

3. Изучить особенности исследования радужки

4. Провести опыты и сделать по ним выводы

В работе использовались соответствующие методы исследования: подбор и анализ литературы, практические опыты.

Строение и функции радужной оболочки глаза

«Из всех органов чувств человека глаз всегда признавался наилучшим даром и чудеснейшим произведением творческой силы природы».

Глаза, строение которых довольно таки сложное, играют немаловажную роль в человеческой жизни. Каждая его составная часть выполняет определенные функции, что, в свою очередь, влияют на остроту зрения. Глаз по форме напоминает шар, поэтому его называют глазным яблоком.

Для того чтобы понять, что же представляет собой глаз человека, лучше всего сравнить орган с фотоаппаратом. Световой поток проходит через зрачок и сквозь хрусталик приводится в фокус на сетчатке. Сетчатка богата светочувствительными палочками и колбочками, которых в человеческом глазу более 100 миллионов. Палочки обеспечивают чувствительность к свету, а колбочки дают глазам свойство различать цвета и небольшие детали. После преломления светового потока, сетчатка трансформирует картинку в нервные импульсы. Далее эти импульсы переходят в мозг, который обрабатывает поступившую информацию [5].

Проведем небольшой эксперимент

Если приближаться к рисунку или отдаляться от него, то в один момент мы обнаружим, что черный кружок. пропал!

Закрываю левый глаз ладонью и смотрю на этот рисунок правым глазом. Сосредоточиваю при этом взгляд на черном крестике. Начинаю приближаться к рисунку.

Мариотта для обнаружения слепого пятна глаза

Строение глаза [9]

Результат. При приближении, на расстоянии примерно 60 см. черный кружок пропал. (Приложение 1).

Это произошло потому, что кружок попал в сектор так называемого слепого пятна глаза. Здесь нет ни колбочек, ни палочек, этим местом глаз не видит. В этом месте расположен сосок зрительного нерва. Центральная ямка и желтое пятно дают самое четкое изображение и наилучшее цветовосприятие. Периферическая часть поля ясного зрения дает менее четкое восприятие и тем самым обеспечивает главенствующую роль центра. Слепое пятно не участвует в зрительном восприятии совсем.

В зрительном аппарате все взаимосвязано между собой, например, как роговица глаза напрямую зависит от состояния радужки. Радужка располагается между хрусталиком и роговицей глаза. Свободное пространство между ними заполнено камерной жидкостью. Также радужка в центре имеет отверстие – зрачок, который отвечает за количество проникнутого света на сетчатку, регулирующаяся мышцами, а именно: радиальными (дилататор) – способные расширять зрачок; круговыми (сфинктер) – способные сужать зрачок.

Радужная оболочка глаза располагается в передней части сосудистой оболочки, между передней камерой и хрусталиком глаза. Она имеет толщину около 0,2 мм, форму диска и состоит из 3 слоев:

Передний слой сформирован из клеток соединительной ткани, под которыми расположены меланоциты, содержащие пигмент. В строме, находится капиллярная сеть и волокна коллагена. Задняя часть органа включает в себя гладкую мышцу, отвечающую за уменьшение зрачка, дилататор и примыкает к поверхности хрусталика.

Кровоток радужки осуществляется за счет ресничных артерий, венцом которых считается артериальный круг. От него идут ответвления – сосудистые веточки, образующие малый круг артерий. Образующие густое сплетение реснитчатые нервы обеспечивают чувствительную иннервацию – защитную реакцию (к примеру, при попадании в глаз соринки появляется ощущение присутствия инородного тела). На стыке с ресничным телом возможен травматический отрыв радужной оболочки и кровоизлияние в глазные камеры [6].

Радужная оболочка глаза призвана контролировать функционирование зрительного аппарата и качество зрения. Она способна не только сигнализировать о состоянии здоровья внутренних органов человека, но и придает красоту, очарование взгляду благодаря многообразию цветовых оттенков.

Результат достигается с помощью поочередного сужения и расширения зрачка. В норме его ширина варьируется от 2 до 5 мм, но при слабом или излишне ярком свете он может сужаться до 1 мм или расширяться до 8-9.

Проведем небольшой эксперимент

Если понаблюдать за своими глазами в зеркало, то можно увидеть, что если на глаз направить яркий свет, то зрачок сужается, а в темноте он, наоборот, становится большим – расширяется. (Приложение 2).

Помимо своей основной функции орган обеспечивает постоянную температуру жидкости передней камеры и ткани, участвует в процессе оттока внутриглазной жидкости, который осуществляется за счет изменения ширины сосудов.

Радужная оболочка является непрозрачным слоем и обладает цветом, который зависит от пигмента меланина. Последнее передается человеку по наследству. Новорожденные дети часто имеют радужку голубого цвета. Это является следствием слабой пигментации. Но спустя полгода число пигментных клеток начинает увеличиваться, и цвет глаз может заметно измениться. Черный или карий цвет радужной оболочки глаза свидетельствуют о высоком уровне содержания пигмента, а серо-голубой или серо-зеленый – о том, что меланина мало.

Кроме того, в природе встречается полное отсутствие меланина в радужной оболочке. Люди, лишенные пигментов не только в радужке, но в кожных и волосяных покровах, называются альбиносы. Еще реже в природе встречается явление гетерохромии – цвет радужки одного глаза отличается от другого [7].

Особенности и возможности радужной оболочки

Радужка – сложная система получения и перенаправления информации об окружающей реальности в головной мозг. По своей структуре радужная оболочка состоит из эластичной материи – трабекулярной сети. Трабекулярная сеть состоит из углублений, гребенчатых стяжек, борозд, колец, морщин, веснушек, сосудов и других черт. Благодаря такому количеству составляющих «узор» сети довольно случаен, что ведёт к большой вероятности уникальности радужной оболочки.

Учёные также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов.

Индивидуальность зрачка – уникальность личности. У каждого человека структура линий, точек и цветов в радужной оболочке глаза сочетается в неповторимых и уникальных комбинациях. Некоторые люди могут иметь похожий цвет глаз, но сами линии и точки на радужке так же уникальны, как и отпечатки пальцев.

Детальное изображение радужной оболочки [10]

Одной из биометрических технологий, используемых для проверки подлинности личности, является аутентификация по радужной оболочке глаза.

На данный момент эта технология является одним из наиболее эффективных способов для идентификации и дальнейшей аутентификации личности. В аэропортах, например, имя пассажира и номер рейса сопоставляются с изображением радужной оболочки, никакие другие данные не требуются. Размер созданного файла, 512 байт с разрешением 640х480, позволяет сохранить большое количество таких файлов на жестком диске компьютера [1].

Очки и контактные линзы, даже цветные, никак не повлияют на процесс получения изображения. Также нужно отметить, что произведенные операции на глазах, удаление катаракты или вживление имплантатов роговицы не изменяют характеристики радужной оболочки, её невозможно изменить или модифицировать. Слепой человек также может быть идентифицирован при помощи радужной оболочки глаза. Пока у глаза есть радужная оболочка, её хозяина можно идентифицировать.

Методы исследования радужки

Основным методом исследования радужки в настоящее время остается иридоскопия. Ее преимуществом является то, что диагностическое заключение может быть составлено непосредственно после осмотра. Еще в древности люди пытались определить болезни по рисунку радужки, ведь это тот орган, на котором остаются отпечатки всего организма. Основоположником современной иридодиагностики считается венгерский врач Игнац Пекцели.

Для удобства работы радужку раскладывают по секторам и представляют ее в виде часов. «Три кита», которые не могут жить друг без друга и на которых стоит иридодиагностика – это схемы проекции органов и различных частей тела на радужке (соматотопические карты, иридотопограммы), иридознаки (изменения структуры и цвета радужки) и клиническое мышление [4].

Анализ картины радужной оболочки начинается с общего осмотра. Для качественного иридологического осмотра необходимо наличие оптической увеличительной системы.

В домашних условиях достичь результатов на высоком уровне, конечно, не получится, но попробуем провести исследование по радужке своего глаза, используя увеличительную лупу.

Осматриваем сначала правый, а затем левый глаз. В каждом из них изучаем центральную зону: форму и размеры зрачка, состояние зрачковой каймы, зрачковый пояс. Далее осматриваем периферическую зону, начиная с отметки «6 ч» и далее по сегментам по ходу часовой стрелки: состояние желудочно-кишечного тракта, поджелудочной железы, мочевыделительной системы, половых органов, бронхолегочной системы, сердца, позвоночника, ЛОР-органов, селезенки, эндокринных органов, мозга. (Приложение 3, 4, 5). Картина радужки записывается условными обозначениями. По радужке своего глаза можно определить, что оболочка достаточно плотная. Форма и размеры зрачка не изменены. На радужке нет каких-либо пятен, лакун. Все это говорит о том, что глаза в хорошем состоянии. Следовательно, и функциональное состояние организма не говорит о его нарушениях.

Ход анализа картины и его результат во многом определяются опытом, эрудицией и уровнем клинического мышления врача-иридолога. Немаловажную роль при этом играет интуиция [8]. Изучая рисунок радужки, можно ориентироваться на следующие признаки: обесцвеченные крапинки – зашлакованность организма, высокий уровень кислотности; темные точки – нарушения в работе органов пищеварения, заболевания желчного пузыря, полукольца или круги – высокий уровень стресса, который может спровоцировать развитие сердечно-сосудистых заболеваний; явно видимая полоса белого цвета по краю радужки – высокий уровень «плохого» холестерина или развивающийся атеросклероз. Любая новая точка, черточка или пятно на радужной оболочке глаза подсказывают, к состоянию какого органа следует внимательно присмотреться.

Иридодиагностика в нашей стране прошла тернистый путь, и долгое время ставилась на один уровень с хиромантией и гаданием. Официально иридодиагностика была признана только с 1984 года. Иридотестирование не предназначено для диагностики болезней. Смысл иридотестирования в том, чтобы определить функциональное состояние организма и выявить его возможности, указать существующие отклонения от нормы в органах и системах, предложить (если требуется) методы восстановления здоровья.

Иридодиагностику многие специалисты считают псевдонаукой. Но все же данный диагностический метод успешно практикуется, помогает обнаружить различные заболевания на разных стадиях. Однако провести иридодиагностику у врача-иридолога в своем городе я не смог, так как в настоящее время ни в одном из диагностических центров, не смог найти, где она проводится.

Заключение

Никто из людей не воспринимает глаза как что-то сверхъестественное. Однако невозможно даже себе представить, насколько уникальный человеческий орган зрения. Это целый механизм, который состоит из миллиарда мельчайших деталей и позволяет тебе воспринимать окружающий мир определенным образом. Никогда не надо не забывать, что глаза – это зеркало души. Каким бы цветом радужной оболочки ты не обладал, нужно помнить, что зрение – это уникальный дар, который дан нам свыше для того, чтобы наслаждаться каждым мгновением в этом мире. Всегда нужно помнить, что глазам нужно отдыхать. Проводить гимнастику для глаз и хотя бы раз в год проходить обследование у офтальмолога.

Благодаря своей уникальной возможности – ранней постановке диагноза практически по всем системам организма – иридодиагностика как составная часть иридологии является исключительно тонкой клинико-диагностической методикой в оценке приобретенных заболеваний и генетического статуса индивида. Диагностическая «сила» состоит в том, что иридодиагностика позволяет выявить начало патологического процесса в доклиническом, бессимптомном периоде, когда обычные диагностические методы не позволяют распознать заболевание.

Схема проекционных зон органов тела человека на левой и правой радужках [8]

Добавить комментарий